The many-body problem for q-oscillators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 244739
(http://iopscience.iop.org/0305-4470/24/20/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 13:57

Please note that terms and conditions apply.

The many-body problem for \boldsymbol{q}-oscillators

E G Floratos \dagger
Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, Parist, France

Received 30 November 1990, in final form 30 April 1991

Abstract

The correct Hamiltonian for the N-body problem of free q-oscillators is found, which promotes the symmetries of the standard $(q=1)$ oscillator systems to q-symmetries. The spectrum of the system is found to be rich, exhibiting interactions between the levels of the individual oscillators.

1. Introduction

In the operator formulation of quantum field theory, symmetries are realized through the Jordan-Wigner construction using free Fermi or Bose annihilation and creation operators [1]. On the other hand new types of symmetries have been shown to appear in two-dimensional integrable statistical systems, the quantum or q-symmetries, which are one-parameter deformations of the usual Lie algebras (Lie groups) with generalized rules for the tensor product of their representations [2-8]. It was natural, then, to extend the Jordan-Wigner construction by inventing oscillators with appropriately deformed commutation relations [9-10]. Indeed, it has been shown that for most of the q-algebras, or q-superalgebras [11-18] the construction can be carried through successfully. Although the quantum group structure itself has its origin in twodimensional integrable systems with non-trivial dynamics, the inverse problem of constructing Hamiltonians, for systems with finite or infinite number of degrees of freedom, with a given quantum group symmetry does not yet appear to have been studied systematically.

In this work we show that the construction of the two-dimensional q-oscillator Hamiltonian is not so straightforward if one wants to promote the $\operatorname{SU}(2)$ symmetry, of the $q=1$ case, to $\mathrm{SU}_{q}(2)$. Solving this problem one learns how to write down Hamiltonians of many q-oscillators which exhibit, as symmetries, the q-deformations of the standard case. Since the algebra of the single q-oscillator turns out to be the building block for these constructions it is profitable to obtain 'coordinate' realizations of the Fock space of the single q-oscillator. Although realizations exist in the literature, as far as we know the q-deformation of the Bargmann-Fock holomorphic realization of quantum mechanics has not been constructed before. As we shall see this is a straightforward construction with many possible applications.

[^0]
1.1. The q-oscillator algebra

To set down our convention the q-Heisenberg-Weyl algebra is defined as $[9,10]$:

$$
\begin{equation*}
a a^{+}-q a^{+} a=q^{-N} \tag{1.1a}
\end{equation*}
$$

where a, a^{+}the annihilation and creation operators of the q-oscillator, while the number operator, N, is defined to be

$$
\begin{equation*}
a^{+} a=\frac{q^{N}-q^{-N}}{q-q^{-1}} \equiv[N] . \tag{1.1b}
\end{equation*}
$$

Here, q is any complex number ($q \neq-1$). In a unitary representation where a, a^{+}are Hermitian conjugate, N is an Hermitian operator only if q is real or a phase $q=\mathrm{e}^{\mathrm{i} \alpha}$ ($\alpha \neq \pi$). If q is a positive real number, positivity of $a^{+} a$ implies positivity of N. If q is a phase one has to be careful in defining the representation space. The Fock space F_{1} is constructed, assuming the existence of a 'vacuum' state, $|0\rangle$, which is annihilated by a and, on this vacuum, 'excited' states are constructed:

$$
\begin{array}{ll}
a|0\rangle=0 & |n\rangle=\frac{a^{+n}}{\sqrt{[n]!}}|0\rangle \\
{[n]!=[n][n-1] \ldots[1]} & {[x] \equiv \frac{q^{x}-q^{-x}}{q-q^{-1}}} \tag{1.2b}
\end{array}
$$

Then the matrix elements of a, a^{+}, N are

$$
\begin{align*}
& a|n\rangle=\sqrt{[n]}|n-1\rangle \tag{1.3a}\\
& a^{+}|n\rangle=\sqrt{[n+1]}|n+1\rangle \tag{1.3b}\\
& N|n\rangle=n|n\rangle \quad n=0,1, \ldots \tag{1.3c}
\end{align*}
$$

In this representation the following relations are true:

$$
\begin{align*}
& a a^{+}-q^{-1} a^{+} a=q^{N} \tag{1.4a}\\
& q^{\lambda N} a^{+} q^{-\lambda N}=q^{\lambda} a^{+} \quad q^{\lambda N} a q^{-\lambda N}=q^{-\lambda} a \tag{1.4b}
\end{align*}
$$

and the algebra ($1.1 a$) and ($1.1 b$) is equivalent on F_{1}, with the following 'superalgebra',

$$
\begin{align*}
& {[N, a]=-a} \tag{1.5a}\\
& {\left[N, a^{+}\right]=a^{+}} \tag{1.5b}\\
& \left\{a, a^{+}\right\}=\frac{\sinh \gamma\left(N+\frac{1}{2}\right)}{2 \sinh (\gamma / 2)} \quad q \equiv \mathrm{e}^{\gamma} . \tag{1.5c}
\end{align*}
$$

We must notice that if $\gamma=2 \pi \mathrm{i} / k, k=3,4, \ldots, a$ root of unity, there are only κ-states $|0\rangle,|1\rangle, \ldots,|\kappa-1\rangle$ and the algebra (1.1a), (1.1b) is supplemented by the relations [17]

$$
\begin{equation*}
a^{\kappa}=0 \quad\left(a^{+}\right)^{\kappa}=\beta I \quad \beta \in \mathbb{C} . \tag{1.6}
\end{equation*}
$$

The q-deformation of the Bargmann-Fock representation is realized by going over the space of analytic functions of one complex variable $z \in \mathbb{C}$, where the operator a, a^{+}, N, are defined as $[8,19]$

$$
\begin{align*}
& a=D_{z} \quad a^{+}=z \quad N=z \partial_{z} \tag{1.7a}\\
& \left(D_{z} f\right)(z) \equiv \frac{f(q z)-f\left(q^{-1} z\right)}{z\left(q-q^{-1}\right)} \quad \forall z \in \mathbb{C} . \tag{1.7b}
\end{align*}
$$

In the space of analytic function $f(z), \mathscr{F}$, there is an inner product which makes z and D_{z} Hermitian conjugates:

$$
\begin{equation*}
(f, g)=\left.\overline{f\left(D_{z}\right)} g(z)\right|_{z=0} \tag{1.8}
\end{equation*}
$$

The set of functions which represent the states, $|n\rangle$,

$$
\begin{equation*}
\langle z \mid n\rangle \equiv u_{n}(\bar{z})=\frac{\bar{z}^{n}}{\sqrt{[n]!}} \quad n=0,1,2, \ldots \tag{1.9}
\end{equation*}
$$

constitutes an orthonormal basis with respect to the inner product (8). The ' δ ' function which expresses the completeness is

$$
\begin{equation*}
\delta(\zeta, \bar{z})=\sum_{n=0}^{\infty} u_{n}(\zeta) u_{n}(\bar{z})=e_{q}(\zeta \bar{z}) \tag{1.10}
\end{equation*}
$$

where the q-exponential (an eigenfunction of D_{z}) is defined as.

$$
\begin{equation*}
e_{q}(z) \equiv \sum_{n=0}^{\infty} \frac{z^{n}}{[n]!} . \tag{1.11}
\end{equation*}
$$

In the standard ($q=1$) Bargmann-Fock representation [20] there is a measure $\mathrm{d} \mu(z)$ which realizes the exponential function as a ' δ ' function,

$$
\begin{equation*}
\int \mathrm{d} \mu(z) \mathrm{e}^{\overline{\zeta z}} f(\bar{z})=f(\bar{\zeta}) \tag{1.12a}
\end{equation*}
$$

this is easily seen to be

$$
\begin{equation*}
\mathrm{d} \mu(z)=\mathrm{d} z \mathrm{~d} \bar{z} \mathrm{e}^{-\hat{\mathrm{z}} z} \tag{1.12b}
\end{equation*}
$$

(the factor $e^{-z z}$ is the inverse of ' $\delta(0)$ '). If $q \neq 1$ it is possible to define a q-deformation of the measure $\mathrm{d} \mu(z)$:

$$
\begin{equation*}
\mathrm{d} \mu_{q}(z)=\mathrm{d}_{q}|z|^{2} \frac{\mathrm{~d} \varphi}{2 \pi} e_{q}(-\bar{z} z) \tag{1.13}
\end{equation*}
$$

where the q-integration over $\mathrm{d}_{q}|z|$ is defined as [21]

$$
\begin{equation*}
\int_{a}^{b} \mathrm{~d}_{q} x f(x)=\left(q^{-1}-q\right) \sum_{\kappa=0}^{\infty} q^{2 \kappa+1}\left(b f\left(q^{2 \kappa+1} b\right)-a f\left(q^{2 \kappa+1} a\right)\right) . \tag{1.14}
\end{equation*}
$$

Indeed, it has been shown recently that the functions $u_{n}(z), n=0,1,2, \ldots$ from a complete orthonormal system with respect to the measure (1.13), where the radial q-integration is between $0 \leqslant|z| \leqslant X_{0}$, and $-X_{0}<0$ is the largest zero of the function $e_{q}(X)$ [21].

This implies that the inner product

$$
\begin{equation*}
(f, g)=\int \mathrm{d} \mu_{q}(z) e_{q}(-\bar{z} z) \bar{f}(z) g(z) \tag{1.15}
\end{equation*}
$$

is identical with that previously defined in (1.8).
The transition functions $u_{n}(z)$ are used to define the q-coherent states [21]

$$
\begin{equation*}
|z\rangle \equiv N_{z} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{[n]!}}|n\rangle=N_{z} e_{q}\left(z a^{+}\right)|0\rangle \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{z}=\left[e_{q}(\bar{z} z)\right]^{-1 / 2} \tag{1.17}
\end{equation*}
$$

and the states $|z\rangle$ satisfy the relation

$$
\begin{equation*}
a|z\rangle=z|z\rangle \tag{1.18}
\end{equation*}
$$

as can be easily checked. These states form an over-complete system [21] with respect to the measure $\mathrm{d}_{q} \mu(z)$:

$$
\begin{align*}
& \int \mathrm{d} \mu_{q}(z)|z\rangle\langle z|=I \tag{1.19a}\\
& \langle\zeta \mid z\rangle=N_{\zeta} N_{z} e_{q}(\bar{\zeta} z) \tag{1.19b}
\end{align*}
$$

where

$$
\begin{equation*}
N_{z}=\left(e_{q}(\tilde{z} z)\right)^{-1 / 2} \tag{1.19c}
\end{equation*}
$$

are the normalization factors.
To every operator A in the Bargmann-Fock space we may associate its symbol $A(\bar{\zeta}, z):$

$$
\begin{equation*}
A(\bar{\zeta}, z)=\langle\zeta| A|z\rangle . \tag{1.20}
\end{equation*}
$$

The symbol has the following interesting properties, which are useful in the holomorphic path integral quantization [1, 20]. If $|f\rangle$ is a state

$$
\begin{equation*}
|f\rangle=\int \mathrm{d} \mu_{q}(z) f(\bar{z})|z\rangle \tag{1.21}
\end{equation*}
$$

then

$$
\begin{align*}
& A|f\rangle \rightarrow(A f)(\bar{\zeta})=\int \mathrm{d} \mu_{q}(z) A(\bar{\zeta}, z) f(\bar{z}) \tag{1.22a}\\
& \langle\zeta| A|f\rangle=\int \mathrm{d} \mu_{q}(z)\langle\zeta| A|z\rangle\langle z \mid f\rangle \tag{1.22b}
\end{align*}
$$

and

$$
\begin{equation*}
\left(A_{1} A_{2}\right)(\bar{\zeta}, z)=\int \mathrm{d} \mu_{q}(\xi) A_{1}(\bar{\zeta}, \xi) A_{2}(\bar{\xi}, z) \tag{1.23}
\end{equation*}
$$

Before leaving the one-oscillator system, we mention that it is possible to realize 'holomorphically' the q-algebra ($1.1 a$), (1.1b) in a finite-dimensional space when q is the κ th primitive root of unity:

$$
\begin{equation*}
q=\omega=\mathrm{e}^{2 \pi \mathrm{i} / k} \quad \kappa=3,4, \ldots \tag{1.24}
\end{equation*}
$$

In this case, introducing the space of functions on a discretized circle, with points only at the positions of the κ-roots of unity,

$$
\begin{equation*}
S_{\mathrm{\kappa}}=\left\{1, \omega, \ldots, \omega^{\kappa-1}\right\} \tag{1.25}
\end{equation*}
$$

we define the action of the exponentials of the 'position' and 'momentum' operators [22]

$$
\begin{align*}
& (h f)\left(\omega^{n}\right)=f\left(\omega^{n+1}\right) \tag{1.26a}\\
& (g f)\left(\omega^{n}\right)=\omega^{n} f\left(\omega^{n}\right) \quad n=0,1, \ldots, \kappa-1 \tag{1.26b}
\end{align*}
$$

In the base of functions $f_{n}\left(\omega^{m}\right)=\delta_{n m}, n, m=0,1, \ldots, \kappa-1$ the operators $h, g(P, Q)$

$$
\begin{equation*}
h=\mathrm{e}^{(2 \pi \mathrm{i} / k) P} \quad g=\mathrm{e}^{\mathrm{i} Q} \tag{1.27}
\end{equation*}
$$

have the matrix representation

$$
h=\left[\begin{array}{llll}
0 & 1 & \ldots & 0 \tag{1.28}\\
& \ddots & & 1 \\
1 & & & 0
\end{array}\right] \quad g=\left[\begin{array}{llll}
1 & & & \\
& \omega & & \\
& & \ddots & \\
& & & \omega^{\kappa-1}
\end{array}\right]
$$

and they satisfy the following properties:
$h^{k}=g^{k}=I \quad h h^{+}=g g^{+}=I$
$h g=\omega g h \quad U h U^{-1}=g \quad U_{i j}=\frac{\omega^{i j}}{\sqrt{N}} \quad i, j=0, \ldots, \kappa-1$.
The operators a, a^{+}in the finite-dimensional ' q-holomorphic' representation are defined to be

$$
\begin{equation*}
a=g^{-1} \frac{h-h^{-1}}{\omega-\omega^{-1}} \quad a^{+}=g \tag{1.30}
\end{equation*}
$$

where P is the 'angular momentum' operator (1.27),

$$
\begin{equation*}
a=g^{-1}[P] \tag{1.31}
\end{equation*}
$$

Then using the first relation of ($1.29 b$) we find

$$
\begin{equation*}
a a^{+}-\omega a^{+} a=\omega^{-P} \quad a a^{+}-\omega^{-1} a^{+} a=\omega^{P} \tag{1.32}
\end{equation*}
$$

so the number operator is

$$
\begin{equation*}
N=P . \tag{1.33}
\end{equation*}
$$

The eigenstates of the operator P are [22], $f_{m} \in \mathscr{F}\left(S_{\kappa}\right)$,

$$
\begin{equation*}
f_{m}\left(\omega^{n}\right)=c_{m} \omega^{n} \quad P f_{m}=m f_{m} \quad m=0, \ldots, \kappa-1 \tag{1.34}
\end{equation*}
$$

the vacuum f_{0},

$$
\begin{equation*}
a f_{0}=g^{-t}[P] f_{0}=0 \tag{1.35a}
\end{equation*}
$$

and the rest $f_{m}, m=1,2, \ldots, \kappa-1$ turns out to be the 'excited' states:

$$
\begin{equation*}
f_{m}=\frac{\left(a^{+}\right)^{m}}{\sqrt{[m]!}} f_{0} \quad c_{m}=\frac{1}{\sqrt{[m]}!} \quad m=0,1, \ldots, \kappa-1 . \tag{1.36}
\end{equation*}
$$

It is easy to check now that

$$
\begin{array}{lr}
a^{+} f_{m}=\sqrt{[m+1]} f_{m+1} & m=0,1, \ldots, \kappa-2 \\
a f_{m}=\sqrt{[m]} f_{m-1} & m=1,2, \ldots, \kappa-1 \tag{1.37b}
\end{array}
$$

as also (see (1.29a))

$$
\begin{align*}
& a^{+} f_{\kappa-1}=\frac{1}{\sqrt{[\kappa+1]!}} f_{0} \tag{1.38a}\\
& a f_{0}=0 . \tag{1.38b}
\end{align*}
$$

The q-harmonic oscillator Hamiltonian problem [10, 11], has been studied for $q^{\kappa}=1$, in [23], where its relation with the angular motion of the two-anyon system has been found.

The above realization (1.30) leads to the Hamiltonian for the q-oscillator:

$$
\begin{equation*}
H=\frac{\sin (2 \pi / \kappa)\left(P+\frac{1}{2}\right)}{2 \sin (\pi / \kappa)}=-\frac{\cos (2 \pi / \kappa) L_{\varphi}}{2 \sin (\pi / \kappa)} . \tag{1.39}
\end{equation*}
$$

where L_{φ} is the angular momentum operator for the two-anyon system [23],

$$
\begin{equation*}
L_{\varphi}=P+\frac{\kappa+2}{4} . \tag{1.40}
\end{equation*}
$$

If q is a phase $q=\mathrm{e}^{\mathrm{i} \gamma}$ then it is the limit of an appropriate sequence of roots of unity:

$$
\begin{equation*}
q=\mathrm{e}^{\mathrm{i} \gamma}=\lim _{n \rightarrow \infty} \mathrm{e}^{\mathrm{i} \gamma_{n}} \quad \gamma_{n} \in Q, n=1,2, \ldots \tag{1.41}
\end{equation*}
$$

Then the matrices g and h introduced above act on infinite component vectors ($\kappa \rightarrow \infty$), which can be thought as the Fourier coefficients of functions on the unit circle $S_{1}=\{z \in \mathbb{C},|z|=1\}$ [22],

$$
\begin{equation*}
h=\mathrm{e}^{\gamma \partial \theta} \quad g=\mathrm{e}^{\mathrm{i} \theta} \quad q=\mathrm{e}^{\mathrm{i} \gamma} \tag{1.42}
\end{equation*}
$$

and

$$
\begin{align*}
& a=\mathrm{e}^{-\mathrm{i} \theta} \frac{\mathrm{e}^{\gamma \partial \theta}-\mathrm{e}^{-\gamma \partial \theta}}{\mathrm{e}^{\mathrm{i} \gamma}-\mathrm{e}^{-\mathrm{i} \gamma}} \quad a^{+}=\mathrm{e}^{\mathrm{i} \theta} \tag{1.43a}\\
& N=-\mathrm{i} \partial_{\theta} . \tag{1.43b}
\end{align*}
$$

The representation (1.42), (1.43a) and (1.43b) is just the restriction of the q-BargmannFock representation on the unit circle.

Finally we would like to mention that the above realizations of the q-oscillator algebra may be used to study realizations of the q-Virasoro or $q-W$ algebras [14, 2428]. For the q-Virasoro algebra (centreless), the expressions for the L_{n} generators [14, 17],

$$
\begin{equation*}
L_{n}=\left(a^{+}\right)^{n+1} a \tag{1.44}
\end{equation*}
$$

lead to the algebra

$$
\begin{align*}
& {\left[L_{n}, L_{m}\right]_{q^{m-n}}=[n-m] q^{N} L_{n+m}} \tag{1.45a}\\
& {[A, B]_{\lambda} \equiv A B-\lambda B A .} \tag{1.45b}
\end{align*}
$$

where N is the number operator for the q-oscillator.
The q-holomorphic realization of (1.44), (1.45a) and (1.45b) is [24]

$$
\begin{equation*}
L_{n}=z^{n+1} D_{z} \tag{1.46}
\end{equation*}
$$

while with our realization of the a, a^{+}, N for q a root of unity, from (1.44), (1.45a) and ($1.45 b$) we get the cyclic finite-dimensional representations of the centreless q-Virasoro algebra [27, 28]:

$$
\begin{equation*}
L_{n}=g^{n} \frac{h-h^{-1}}{\omega-\omega^{-1}} \quad n=0,1,2, \ldots, \kappa-1 . \tag{1.47}
\end{equation*}
$$

As we shall see later the q-oscillator algebra in the form (1.5a)-(1.5c) can be realized as a part of the q-orthosymplectic superalgebra osp(2.1) and this superalgebra being a Hopf algebra induces a Hopf structure to the q-Virasoro algebra (1.44), (1.45a)(1.45c) in both cases (q being a root of unity or not).

2. Two or more q-oscillators

In the standard quantum-mechanical case, $q=1$, a free system of $M=1,2, \ldots$, bosonic oscillators is defined through the algebra

$$
\begin{array}{ll}
{\left[a_{i}, a_{j}^{+}\right]=\delta_{i j}} & {\left[a_{i}, a_{j}\right]=\left[a_{i}^{+}, a_{j}^{+}\right]=0} \\
N_{i}=a_{i}^{+} a_{i} & i, j=1,2, \ldots, M . \tag{2.1b}
\end{array}
$$

the Hamiltonian is

$$
\begin{equation*}
H=\sum_{i=1}^{M} h_{i} \quad h_{i}=N_{i}+\frac{1}{2} \tag{2.2}
\end{equation*}
$$

and the symmetry of the system is $U(M)$ with generators

$$
\begin{align*}
E_{i j} & =a_{i}^{+} a_{i} \tag{2.3a}\\
N_{i} & =a_{i}^{+} a_{i} \tag{2.3b}
\end{align*}
$$

When $q \neq 1$ the algebra ($2.1 a$), ($2.1 b$) becomes

$$
\begin{align*}
& a_{i} a_{i}^{+}-q a_{i}^{+} a_{i}=q^{-N_{i}} \quad a_{i}^{+} a_{i}=\frac{q^{N_{i}}-q^{-N_{i}}}{q-q^{-1}} \tag{2.4a}\\
& {\left[a_{i}, a_{j}^{+}\right]=\left[a_{i}, a_{j}\right]=\left[a_{i}^{+}, a_{j}^{+}\right]=0 \quad i \neq j=1, \ldots, M} \tag{2.4b}
\end{align*}
$$

The first thing we notice is that the free system of q-oscillators defined by the Hamiltonian

$$
\begin{equation*}
H=\sum_{i=1}^{M} H_{i} \quad H_{i}=\frac{1}{2}\left(a_{i}^{+} a_{i}+a_{i} a_{i}^{+}\right) \quad i=1, \ldots, M \tag{2.5}
\end{equation*}
$$

breaks the symmetry $U(\bar{M})$ (this is expected), but also this symmetry is not transformed into a $\mathrm{U}_{q}(M)$ symmetry (as one would hope). To see this we take for simplicity $M=2$. Then relations (2.4a) and (2.4b) imply

$$
\begin{align*}
& H_{i}=\frac{1}{2}\left(\left[h_{i}+\frac{1}{2}\right]+\left[h_{i}-\frac{1}{2}\right]\right) \quad i=1,2 \tag{2.6a}\\
& h_{i}=N_{i}+\frac{1}{2} \tag{2.6b}\\
& H=H_{1}+H_{2} . \tag{2.6c}
\end{align*}
$$

To make the algebra transparent we put $q=\mathrm{e}^{\gamma}$, and so

$$
\begin{equation*}
H=\frac{\sinh \left(\gamma\left(h_{1}+h_{2}\right) / 2\right) \cosh \left(\gamma\left(h_{1}-h_{2}\right) / 2\right)}{2 \sinh (\gamma / 2)} \tag{2.7}
\end{equation*}
$$

The generators of the $\mathrm{SU}_{q}(2)$, which can be constructed out of $a_{1}, a_{1}^{+}, a_{2}, a_{2}^{+}$are [10]

$$
\begin{equation*}
J_{+}=a_{i}^{+} a_{2} \quad J_{-}=a_{2}^{+} a_{1} \quad J_{3}=\frac{1}{2}\left(h_{1}-h_{2}\right) \tag{2.8}
\end{equation*}
$$

and they satisfy the algebra

$$
\begin{equation*}
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\left[2 J_{3}\right] \tag{2.9}
\end{equation*}
$$

The quadratic Casimir of this algebra [10] (chosen to agree with the known Casimir for $q=1$) is

$$
\begin{align*}
C_{2} & =J_{+} J_{-}+\left[J_{3}-\frac{1}{2}\right]^{2}-\frac{1}{4} \tag{2.10a}\\
& =\frac{\sinh ^{2}(\gamma / 2)\left(h_{1}+h_{2}\right)}{\sinh ^{2}(\gamma / 2)}-\frac{1}{4} . \tag{2.10b}
\end{align*}
$$

We observe that, when $\gamma=0(q=1)$,

$$
\begin{equation*}
C_{2}=\frac{1}{4}\left(H^{2}-1\right) \tag{2.11}
\end{equation*}
$$

and so we have $\operatorname{SU}(2)$ symmetry (all generators commute with H). But when $\gamma \neq 0$ the Hamiltonian (2.7) depends explicitly on the generator J_{3}. The representation space of $\mathrm{SU}_{q}(2)$ constructed from two q-oscillators is $[9,10,19]$

$$
\begin{align*}
& |j, m\rangle=\frac{\left(a_{1}^{+}\right)^{j+m}}{\sqrt{[j+m]}} \frac{\left(a_{2}^{+}\right)^{j-m}}{\sqrt{[j-m]!}}|0\rangle \tag{2.12}\\
& j+m=n_{1} \quad j-m=n_{2} \quad n_{1}, n_{2}=0,1,2, \ldots \tag{2.13}
\end{align*}
$$

where n_{1}, n_{2} are the eigenvalues of the number operators N_{1}, N_{2}. On this space the spectrum of the free Hamiltonian (2.7) with broken $\mathrm{SU}_{q}(2)$ symmetry is as follows:

$$
\begin{align*}
& H|j, m\rangle=E_{j, m}|j, m\rangle \tag{2.14a}\\
& E_{j, m}=\frac{\sinh (\gamma / 2)\left(j+\frac{1}{2}\right) \cosh \gamma m}{\sinh (\gamma / 2)} \quad \begin{array}{l}
j=0,1, \ldots \\
m=-j, \ldots, j .
\end{array} \tag{2.14b}
\end{align*}
$$

Now we pose the question of how it is possible to combine two oscillators in such a way that the resulting system exhibits $\mathrm{SU}_{q}(2)$ symmetry (and in general M oscillators with $\mathrm{SU}_{q}(M)$ symmetry). From the expressions (2.10a), (2.10b) for the Casimir of $\mathrm{SU}_{q}(2)$ we see that we have to find a combination of Hamiltonians,

$$
\begin{equation*}
H_{i}=\frac{\sinh \gamma h_{i}}{2 \sinh (\gamma / 2)} \quad i=1,2 \tag{2.15}
\end{equation*}
$$

such that the total Hamiltonian is a function only of $h_{1}+h_{2}$. There is only one such linear combination of the two Hamiltonians (up to a permutation of 1 with 2) which gives the right limit when $q \rightarrow 1$,

$$
\begin{align*}
& H=H_{1} q^{h_{2}}+H_{2} q^{-h_{1}} \tag{2.16a}\\
& H=\frac{\sinh \gamma\left(h_{1}+h_{2}\right)}{2 \sinh (\gamma / 2)} . \tag{2.16b}
\end{align*}
$$

For more than two oscillators, say M oscillators, one has to repeat the above construction and find

$$
\begin{equation*}
H=\sum_{\kappa=1}^{M} q^{-h_{1}-h_{2} \ldots-h_{\kappa-1}} H_{\kappa} q^{h_{\kappa+1}+\ldots+h_{M}} \tag{2.17}
\end{equation*}
$$

or

$$
\begin{equation*}
H=\frac{\sinh \gamma\left(h_{1}+\ldots+h_{M}\right)}{2 \sinh (\gamma / 2)} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i}=N_{i}+\frac{1}{2} \quad i=1, \ldots, M . \tag{2.19}
\end{equation*}
$$

This Hamiltonian is a $\mathrm{U}_{q}(M)$ symmetry since it commutes with all generators of $\mathrm{SU}_{q}(M)$ in the q-bosonic oscillator realization [11, 12]

$$
\begin{array}{ll}
E_{i j}=a_{i}^{+} a_{j} & i \neq j=1, \ldots, M \\
d_{i}=h_{i}-h_{i+1} & i=1, \ldots, M-1 \\
d=\sum_{i=1}^{M} h_{i}-\frac{M}{2} & \tag{2.20c}
\end{array}
$$

and the spectrum on the basis

$$
\begin{align*}
& \left|n_{1} ; \ldots, n_{M}\right\rangle=\prod_{i=1}^{M} \frac{\left(a_{i}^{+}\right)^{n_{i}}}{\sqrt{\left[n_{i}\right]!}}|0\rangle . \tag{2.21}\\
& n_{1}, n_{2}, \ldots=0,1,2, \ldots
\end{align*}
$$

is given by

$$
\begin{align*}
& \bar{H}\left|n_{1}, \ldots, n_{M}\right\rangle=E_{n_{1} \ldots n_{M}}\left|n_{1}, \ldots, n_{M}\right\rangle \tag{2.22a}\\
& E_{n_{1} \ldots n_{M}}=\frac{\sinh \gamma\left(n_{1}+\ldots+n_{M}+M / 2\right)}{2 \sinh (\gamma / 2)} \tag{2.22b}
\end{align*}
$$

We observe that the above q-oscillator system is interacting. For $\gamma \neq 0$, we have repulsion of the levels. When $\gamma=\mathrm{i} \alpha$, imaginary, some levels feel attraction and others repulsions. In particular when $-\pi<\alpha<\pi$, the ground state energy decreases with the number of oscillators.

It is possible to construct Hamiltonians with any product of q-symmetries. For example, if H_{1}, H_{2} are Hamiltonians with $\mathrm{U}_{q}\left(M_{1}\right), \mathrm{U}_{q}\left(M_{2}\right)$ symmetry then it is obvious that $H=H_{1}+H_{2}$ has symmetry $\mathrm{U}_{q}\left(M_{1}\right) \times \mathrm{U}_{q}\left(M_{2}\right)$ and not $\mathrm{U}_{q}\left(M_{1}+M_{2}\right)$.

Finally, here are some remarks on the degeneracy of the $\mathrm{U}_{q}(M)$ symmetric Hamiltonians. For generic γ (not $\gamma=2 \pi \mathrm{i} / \kappa$) the degeneracy for every level is determined by a fixed value of $n_{1}+\ldots+n_{M}$, say n, and it is equal to $\mathrm{d}(n)$, the number of partitions of n into positive integers. When $\gamma=2 \pi \mathrm{i} / \kappa$ then the symmetry increases with the degeneracy $\mathrm{d}_{\kappa}(n)$ equal to the number of partitions of n into positive integers mod κ.

Another remark concerns the representation of $\mathrm{SU}_{q}(M)$ (see $2.20 a$) and (2.20b)) in the case $q=\mathrm{e}^{2 \pi i / \kappa}$. Using the expressions for the a_{i}, a_{i}^{+}s given by the matrices g, h (see 1.30)) we obtain explicit matrix realizations for this 'singular' case [29]. For example, for $\mathrm{SU}_{q}(2)$ we have (1.27)

$$
\begin{align*}
& J_{+}=g \otimes g^{-1} \frac{h-h^{-1}}{\omega-\omega^{-1}} \quad \omega=q=\mathrm{e}^{2 \pi \mathrm{i} / \kappa} \tag{2.23a}\\
& J_{-}=g^{-1} \frac{h-h^{-1}}{\omega-\omega^{-1}} \otimes g \tag{2.23b}\\
& J_{3}=\frac{1}{2}(P \otimes 1-1 \otimes P) . \tag{2.23c}
\end{align*}
$$

This representation is irreducible and we have

$$
\begin{equation*}
J_{+}^{\kappa}=J_{-}^{\kappa}=0 . \tag{2,24}
\end{equation*}
$$

3. Hopf algebra for the \boldsymbol{q}-oscillator

After exposing the general strategy for the construction of $\mathrm{SU}_{q}(M)$-invariant Hamiltonians, we would like to go back to the two q-oscillator system (or two-dimensional q-oscillator) and discuss the origin of the 'co-multiplication type' of combination of the single-oscillator Hamiltonians.

It has been noticed recently $[15,16,18]$, that there is a q-bosonic realization of the orthosymplectic q-superalgebra osp_{q} (2.1) [30-32], with the a, a^{+}operators playing
the role of the odd elements and a^{2}, a^{+2} the role of the even elements. A minimal subalgebra of the algebra osp (2.1) is formed by the elements $a, a^{+}, h=N+\frac{1}{2}$:

$$
\begin{equation*}
[h, a]=-a \quad\left[h, a^{+}\right]=a^{+} \quad\left\{a, a^{+}\right\}=\frac{\sinh \gamma h}{2 \sinh (\gamma / 2)} \tag{3.1}
\end{equation*}
$$

The superalgebra osp_{q} (2.1) has a Hopf structure. The co-multiplication being

$$
\begin{align*}
& \Delta(a)=a \otimes q^{h / 2}+q^{h / 2} \otimes a \tag{3.2a}\\
& \Delta\left(a^{+}\right)=a^{+} \otimes q^{h / 2}+q^{-h / 2} \otimes a^{+} \tag{3.2b}\\
& \Delta(h)=h \otimes I+I \otimes h \tag{3.2c}
\end{align*}
$$

the antipode and the co-unit given by

$$
\begin{array}{lrr}
\gamma\left(a^{+}\right)=-q^{1 / 2} a^{+} \quad \gamma(a)=-q^{-1 / 2} a & \gamma(h)=-h \\
\varepsilon(1)=1 & \varepsilon(h)=\varepsilon(a)=\varepsilon\left(a^{+}\right)=0 . & \tag{3.3b}
\end{array}
$$

The algebra (3.1) has Δ, as co-multiplication with a graded tensor product

$$
\begin{equation*}
(a \otimes b)(c \otimes d)=(-1)^{\delta(b) \delta(c)} a c \otimes b d \tag{3.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta(a)=\delta\left(a^{+}\right)=1 \quad \delta(h)=0 \tag{3.5}
\end{equation*}
$$

Even in the case $q=1$ the graded tensor product structure is needed because of the anticommutators. In the tensor product space

$$
\begin{equation*}
\left|n_{1}, n_{2}\right\rangle=\frac{\left(a_{1}^{+}\right)^{n_{1}}}{\sqrt{\left[n_{1}\right]}!} \frac{\left(a_{2}^{+}\right)^{n_{2}}}{\sqrt{\left[n_{2}\right]}!}|0,0\rangle \quad n_{1}, n_{2}=0,1, \ldots \tag{3.6}
\end{equation*}
$$

one may construct the states

$$
\begin{equation*}
|n\rangle=\frac{\Delta\left(a^{+}\right)^{n}}{\sqrt{[n]!}}|0,0\rangle \quad n=0,1,2, \ldots \tag{3.7}
\end{equation*}
$$

on which the operators $\Delta(a), \Delta\left(a^{+}\right), \Delta(h)$ satisfy the q-oscillator algebra

$$
\begin{equation*}
\Delta(a) \Delta\left(a^{+}\right)-q \Delta\left(a^{+}\right) \Delta(a)=q^{-\Delta(h)+1 / 2} \tag{3.8}
\end{equation*}
$$

Since (3.1) 'defines', the Hamiltonian, H

$$
\begin{equation*}
H=\frac{1}{2}\left\{a, a^{+}\right\} \tag{3.9}
\end{equation*}
$$

we see that the co-multiplication defines the correct 'tensoring' of the two-oscillator Hamiltonians:

$$
\begin{equation*}
\Delta(H)=\frac{1}{2}\left\{\Delta(a), \Delta\left(a^{+}\right)\right\}=H_{1} q^{h_{2}}+q^{-h_{1}} H_{2} . \tag{3.10}
\end{equation*}
$$

In this framework there is still an $\mathrm{SU}_{q}(2)$ symmetry (a_{1}, a_{2}^{+}anticommute with a_{2}, a_{2}^{+}),

$$
\begin{equation*}
J_{+}=a_{1}^{+} a_{2} \quad J_{-}=-a_{2}^{+} a_{1} \quad J_{3}=\frac{1}{2}\left(h_{1}-h_{2}\right) \tag{3.11}
\end{equation*}
$$

which commutes with $\Delta(H)$.
One may, however, forget this superalgebra structure as is done in the $q=1$ case when the two bosonic oscillator system is discussed. Since (3.10) gives the $\mathrm{SU}_{4}(2)$ symmetric Hamiltonian, even when the a_{1}, a_{1}^{+}commute with the a_{2}, a_{2}^{+}, we may consider the Hopf algebraic structure only as a helpful device, although we think that
it would be interesting to examine systems of oscillators, which have anticommuting a_{i}, a_{i}^{+}operators.

4. Conclusion

We have defined many-body systems of q-oscillators with q-symmetries. Although these systems seem to be non-local, there are interesting physical systems with manybody non-local interactions. Such systems appear in $2+1$ dimensions in condensed matter physics-the now famous anyons [33,34]. It is known that the anyon system exhibits exotic statistics with braid group permutation symmetry. Because of this and because the braid group plays a distinguished role in the representations of $\mathrm{SU}_{q}(M)$ groups, which are the symmetries of the presented q-oscillator systems, we believe that the latter must possess, apart from their exact integrability, analogous physical properties with the anyon systems. In some recent work [23] we found a relation of the one q-oscillator system and the angular motion of the two-anyon system. It could be the case that more degrees of freedom of the anyon systems can be implemented algebraically using the many q-oscillator systems with $\mathrm{SU}_{q}(M)$ symmetries.

References

[1] Itzykson C and Zuber J B 1980 Quantum Field Theory (New York: McGraw-Hill)
[2] Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11 247; 1986 Commun. Math. Phys. 102 537
[3] Kulish P and Reshetikhin N 1983 J. Sou. Math. 232435
[4] Sklyanin E 1982 Funct. Anal. Appl. 16263
[5] Drinfeld V 1985 Sou. Math. Dokl. 32 254; 1986 Proc. Int. Cong. Mathematics, Berkeley
[6] Manin Y 1988 Quantum Groups and Non-commutative Geometry (Montreal: University of Montreal)
[7] Faddeev L, Reshetikhin N and Takhtajan L 1989 Braid Group, Knot Theory and Statistical Mechanics ed C Yang and M Ge (Singapore: World Scientific)
[8] Alvarez-Gaumé L, Gomez C and Sierra G 1989 Phys, Lett. 220B 142
[9] Biedenharn L 1989 J. Phys. A: Math. Gen. 22 L873
[10] Macfarlane A 1989 J. Phys. A: Math. Gen. 224581
[11] Sen C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[12] Hayashi T 1990 Commun. Math. Phys. 127129
[13] Chaichian M and Kulish P 1990 Phys. Lett. 234B 72
[14] Chaichian M, Kulish P and Lukierski J 1990 Phys, Left. 237B 401
[15] Floreanini R, Spiridonov V P and Vinet L 1990 Phys. Lett. 242383
[16] Floreanini R, Spiridonov V P and Vinet L UCLA/90/TEP/21 Preprint
[17] Polycronakos A UFTP-89-23 Nov 89 Preprint Florida University
[18] Celeghini E, Palev T D and Tarlini M 1990 YITP/K-865 Preprint Yukawa Institute (Kyoto)
[19] Ruegg H 1990 J. Math. Phys. 311085
[20] Bargmann V 1961 Commun. Pure Applied Math. 14 187; 1967 Commun. Pure Applied Math. 201
[21] Gray R and Netson C A SUNY-BING 7/11/90 Preprint State University of New York Bracken A J, MacAnally D S, Zhang R B and Gould M D 1990 Preprint University of Queensland
[22] Floratos E G 1989 Phys. Lett. 228B 335
Balian R and Itzykson C 1986 C.R. I Acad. Sci. 33773
[23] Floratos E G and Tomaras T N 1990 Phys. Lett. 251B 163
[24] Curtright T and Zachos C 1990 Phys. Lett. 243B 237
[25] Bernard D and Leclair A 1989 Phys. Lett. 227B 417
[26] Chaichian M, Ellinas D and Popowicz Z 1990 Hu-TFT-90-37 Preprint University of Helsinki
[27] Narganes-Quijano F J 1990 ULB-TH90/01 Preprint Universite Libre de Bruxelles
[28] Polychronakos A 1990 HEP-90-14, UFIFT Preprint University of Florida
[29] Pasquier V and Saleur H 1990 Nucl. Phys. B 330523
[30] Kulish P P and Reshetikhin N Y 1989 Lett. Math. Phys. 18143
[31] Saleur H 1990 Nucl. Phys. B 336363
[32] Devchand C 1989 THEP 89/12 Preprint Freiburg University
[33] Laughlin R B 1988 Science 242525
[34] Canright G S and Girvin S M 1990 Science 2471197

[^0]: \dagger On leave of absence (until 31/12/1990), from the Physics Department, University of Crete, Iraklion, Crete. \ddagger Unité Propre de Recherche du Centre National de la Recherche Scientifique associée à l'Ecole Normale Supérieure et à l'Université de Paris-Sud.

