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1. Phys. A Math. Gen. 24 (1991) 4739-4750. Printed in the UK 

The many-body problem for q-oscillators 

E G Floratost 
Laboratoire d e  Physique Thhique  de  I'Ecole Normale SupCrieure, Parist, France 

Received 30 November 1990, in final form 30 April 1991 

Abstract. The correct Hamiltonian for the N-body problem of free q-oscillators is found, 
which promotes the symmetries of the standard ( q =  1) oscillator systems to q-symmetries. 
The spectrum of the system is found to be rich, exhibiting interactions between the levels 
of the individual oscillators. 

1. Introduction 

In  the operator formulation of quantum field theory, symmetries are realized through 
the Jordan- Wigner construction using free Fermi or Bose annihilation and creation 
operators [I]. On the other hand new types of symmetries have been shown to appear 
in two-dimensional integrable statistical systems, the quantum or q-symmetries, which 
are one-parameter deformations of the usual Lie algebras (Lie groups) with generalized 

.-̂-*I.̂ .a.."-- ---.A ..̂ . ̂.-.L̂:- -"..-e"a..*"*:-.." r, 0 ,  It ... "^ "^&.._", *LO.. *,. 
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extend the Jordan-Wigner construction by inventing oscillators with appropriately 
deformed commutation relations [9-IO]. Indeed, it has been shown that for most of 
the q-algebras, or q-superalgebras [ll-181 the construction can be carried through 
successfully. Although the quantum group structure itself has its origin in two- 
dimensional integrable systems with non-trivial dynamics, the inverse problem of 

freedom, with a given quantum group symmetry does not yet appear to have been 
studied systematically. 

In this work we show that the construction of the two-dimensional q-oscillator 
Hamiltonian is not so straightforward if one wants to promote the SU(2) symmetry, 
of the q = 1 case, to SU,(2). Solving this problem one learns how to write down 
Hami!!onians of many q-osci!!a!ors which exhibit, as symmetries, the :-deformatinns 
of the standard case. Since the algebra of the single q-oscillator turns out to be the 
building block for these constructions it is profitable to obtain 'coordinate' realizations 
of the Fock space of the single q-oscillator. Although realizations exist in the literature, 
as far as we know the q-deformation of the Bargmann-Fock holomorphic realization 
of quantum mechanics has not been constructed before. As we shall see this is a 
Straightforward construction with many possible applications. 

constr-cting Hami!!nnians, fnr systems with finite or infEite  umber of ,bore+* - -D .__"  nf 
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1.1. The q-oscillator algebra 

To set down our convention the q-Heisenberg-Weyl algebra is defined as [9, lo]: 

(1.la) 
where a, a +  the annihilation and creation operators of the q-oscillator, while the 
number operator, N, is defined to be 

+ +  aa -qa a = q - N  

( l . lb)  

Here, q is any complex number (q # -1). In a unitary representation where a, a +  are 
Hermitian conjugate, N is an Hermitian operator only if q is real or a phase q =e'" 
(a # T). If q is a positive real number, positivity of a + a  implies positivity of N. If q 
is a phase one has to be careful in defining the representation space. The Fock space 
F,  is constructed, assuming the existence of a 'vacuum' state, IO), which is annihilated 
by a and, on this vacuum, 'excited' states are constructed: 

a+" 
m! In) =- lo) n =0,1,2, .  . . (1.2a) aIO)=O 

q x  - q-x 

[XI'-, [ n ] !  = [ n ] [ n  - 11.. . [ I ]  
9 - 4  

(1.26) 

Then the matrix elements of a, a+, N are 

a \ n ) = m I n - l )  (1.3a) 

a + l n ) = m l n + l )  (1.3b) 

Njn)= njn)  ( 1 . 3 ~ )  n = 0, I ,  . . . . 

In this representation the following relations are true: 

(1.4a) 

q"a+ qANaq-AN = q - h a  (1.46) 

and the algebra ( l . l a )  and (1.1 b )  is equivalent on F , ,  with the following 'superalgebra', 

[ N ,  a ] =  -a ( 1 . 5 ~ )  

(1.56) [ N , o  ] = a  

a a + - q - ' a + a = q  N 

* N  + -AN= 
4 a q  

+ +  

q c ey sinh y ( N + f )  
2 sinh(y/2) 

(a, a+] = ( 1 . 5 ~ )  

We must notice that if y = 2 ~ i /  k, k = 3, 4, . . . , a root of unity, there are only K-states 
IO), Il), . . . , I K  - 1) and the algebra ( l . l a ) ,  (1.16) is supplemented by the relations [17] 

a x  = O  (a')" = P I  p€c.  (1.6) 
The q-deformation of the Bargmann-Fock representation is realized by going over the 
space of analytic functions of one complex variable Z E @ ,  where the operator a, at, 
N, are defined as [8,19] 

a = D, a + = z  N = za, ( 1 . 7 ~ )  

(1.76) 
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In the space of analytic functionf(z), 9, there is an inner product which makes z and 
0, Hermitian conjugates: 

(1; E) =f(D,)g(z)l,=,. (1.8) 

The set of functions which represent the states, In), 

Z" 
(z l t1 )=  u.(Z)=- n = 0, 1,2 ,  &ij! 

constitutes an orthonormal basis with respect to the inner product (8). The '6' function 
which expresses the completeness is 

m 

6(L z) = 1 u , ( O u , ( f )  = e&'4 (1.10) 
" = O  

where the q-exponential (an eigenfunction of 0,) is defined as. 

(1.11) 

In the standard (q = 1) Bargmann-Fock representation [20] there is a measure dp(z)  
which realizes the exponential function as a '6'  function, 

j d d z )  e " f ( 4  =f(f) (1.12a) 

this is easily seen to be 

d p ( z ) = d z  d i e - "  (1.126) 

(the factor e?' is the inverse of '6(0) ' ) .  If q # 1 i t  is possible to define a q-deformation 
of the measure dp(z):  

(1.13) dpq(z)=dqlz/  2 -eq ( -%)  drp 
271 

where the q-integration over d,lz is defined as [21] 
m 

jobd&f(x)=(q- ' -q)  z q2""(bf(qzx+'b) -af (q2"+'a) ) .  (1.14) 
k = O  

Indeed, it has been shown recently that the functions u. (z ) ,  n =0, 1 . 2 , .  . . from a 
complete orthonormal system with respect to the measure (1.13), where the radial 
q-integration is between 0 s  l z l<Xo ,  and -Xo<O is the largest zero of the function 
eJX) P I .  

This implies that the inner product 

(1; g) = dp,(z)e,(-iz)f:(Z)g(z) (1.15) 

is identical with that previously defined in (1.8). 
The transition functions u , ( z )  are used to define the q-coherent states [21] 

(1.16) 
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where 

N, = [e,(~z)]-"* 

and the states 12) satisfy the relation 

a l z )=  z ( z )  

(1.17) 

(1.18) 

as can be easily checked. These states form an over-complete system [21] with respect 
to the measure d,p(z): 

1 dr,(z)lz)(zl= I (1.19~1) 

(LIZ)= N$"e,(&) (1.196) 

where 

N , =  ( e q ( 2 z ) ) - : 1 2  ( 1 . 1 9 ~ )  

are the normalization factors. 
To every operator A in the Bargmann-Fock space we may associate its symbol 

2 ) :  

A(E z )  = (LlAI4. (1.20) 

The symbol has the following interesting properties, which are useful in the holomorphic 
path integral quantization [l ,  201. If I f )  is a state . 

(1.22a) 

( 1.22 b) 

and 

Before leaving the one-oscillator system, we mention that it is possible to realize 
'holomorphically' the 9-algebra ( l . l a ) ,  ( l . l b )  in a finite-dimensional space when 9 is 
the Kth primitive root of unity: 

= = e Z n i / k  K = 3 , 4 , .  . . (1.24) 

In this case, introducing the space of functions on a discretized circle, with points only 
at the positions of the K-TOOtS of unity, 

(1.25) 

we define the action of the exponentials of the 'position' and 'momentum' operators [22] 

( h f ) ( w " )  =f(w"") (1.26a) 

(gf)(o") = w " f ( w " )  n = O ,  1 ,..., K - 1 .  ( 1.26 b) 

s, =[ l ,  w , .  . . ,U"-'} 
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In the base of functions f .(w") = &,,,, n, m =0, 1 , .  . . , K - 1  the operators h, g (P ,  Q )  

h = e ( Z n i l k ) P  = eiQ (1.27) 

have the matrix representation 

0 1 ... 0 

h =  [ ' . .  :] . _ ,  ] (1.28) 

and they satisfy the following properties: 

(l .29a) h = g  = I  

hg = wgh U h W '  = g U ~~ =- i , j = O  , _ _ _ ,  K - I .  (1.296) 

The operators a, a+ in the finite-dimensional 'q-holomorphic' representation are defined 
to be 

w x - I  

+ hh = g g + = l  k k  

WY 

h - h - '  
w - w - '  

a=g-'-  a + = g  

where P is the 'angular momentum' operator (1.27), 

a = g - ' [ P ] .  

Then using the first relation of (1.296) we find 
+ - 1  + aa+ - wa+a = w-' an - -w  a a = w p  

so the number operator is 

N = P. 

The eigenstates of the operator P are [22], f m  E 9'(S,), 

f m ( w " )  = WJ" Pf, = mfm m =0, . . . , K - 1 

the vacuum f n ,  

a fo=g- ' [P] fo=O 

and the rest f m ,  m = 1,2 , .  . . , K - 1 turns out to be the 'excited' states: 

m = O , l ,  ...., K - I .  
(a')"' 1 

c,, = - m! f m  =- J p T I ! f O  
It is easy to check now that 

a+fm = J[m+lIfm+, 
afm = G l f m 8  - I 

m =0, I , .  . . , K - 2  

m = 1 ,  2 , .  . . , K -  1 

as also (see (1 .29a))  

afn = 0. 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

(1.35a) 

(1.36) 

(1.37a) 

(1.37b) 

( I  .38a) 

(1.386) 
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The q-harmonic oscillator Hamiltonian problem [ lo ,  111, has been studied for q" = 1 ,  
in [23], where its relation with the angular motion of the two-anyon system has been 
found. 

The above realization (1.30) leads to the Hamiltonian for the q-oscillator: 

sin(z?r/K)(P+f) cos(2?r /~)L,  
2sin(a/K) 2sin(?r/K) ' 

- -- H =  

where Lq is the angular momentum operator for the two-anyon system [23], 

K + 2  
L, = P+- 

4 

(1.39) 

( 1.40) 

If q is a phase q = eiy then it is the limit of an appropriate sequence of roots of unity: 

= = lim y n t Q , n = l , 2  , . . . .  (1.41) 

Then the matrices g and h introduced above act on infinite component vectors ( K + m), 
which can be thought as the Fourier coefficients of functions on the unit circle 

h = elas eif l  q = e'y (1.42) 

n-cc 

s, = { z t  c, 121 = 1) [22], 

and 

N = -iJ,. (1.436) 
The representation (1.42), ( 1 . 4 3 ~ )  and (1.436) is just the restriction ofthe q-Bargmann- 
Fock representation on the unit circle. 

~ e n f o n  that :he &=.?e :ea!izafoxs of the q.o:&!at=: 
algebra may be used to study realizations of the q-Virasoro or q - W algebras [14,24- 
281. For the q-Virasoro algebra (centreless), the expressions for the L,  generators 
[14, 171, 

( 1.44) 

F.xa!!y ;:.e ;:.=-!d like 

+ " + I  L.,=(a ) a 
lead to the algebra 

n , m ~ B  (1.451) 

( 1.456) 

N [L,, Lmlq-,-  = [ n  -m]q L,,, 

[A,  E ] ,  E A B -  ABA. 

where N is the number operator for the q-oscillator. 
The q-holomorphic realization of (1.441, (1.45a) and (1.456) is [24] 

~ I.,? = Z*+l - ' n~ (1.46) 

while with our realization of the a, at, N for q a root of unity, from (1.44). (1.45a) 
and (1,456) we get the cyclic finite-dimensional representations of the centreless 
q-Virasoro algebra [27,28]: 

(1.47) 
h - h - '  
0-0-' 

L , = g  ~ f l = O , 1 , 2  , . . . ,  K - 1 .  

As we shall see later the q-oscillator algebra in the form (l .Sa)-(l .Sc) can be realized 
as a part of the q-orthosymplectic superalgebra osp(2.1) and this superalgebra being 
a Hopf algebra induces a Hopf structure to the q-Virasoro algebra (1.44). ( 1 . 4 5 ~ ) -  
( 1 . 4 5 ~ )  in both cases (q being a root of unity or not). 
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2. Two or more q-oscillators 

In the standard quantum-mechanical case, 9 = 1, a free system of M = 1.2,. . . , bosonic 
oscillators is defined through the algebra 

[a,. a:] = 6, [a,, a,l=[a?,a:l=O (2. la)  

N, = a:a, i , j = l , 2  ,..., M. (2.lb) 
.L̂  :- 
L U G  "lllllllUlll'lL' 13 

M 

H = X  h, h, = N, ++ (2.2) 
i = ,  

and the symmetry of the system is U ( M )  with generators 

E.. 'I = ata.  I ,  (2.3a) 

N. I , ,  = a ta .  (2.3b) 

When 9 # 1  the algebra (2.la), (2.lb) becomes 
9" - 9-" 

9-9- '  
(2.4a) + +  + a.a. -9a ,  a, = 9-" a ,  a, = 

[a. I ,  a+]=[a.  I a.]=[a+ I I ,  a + ] = O  I i # j = 1, . . . , M. (2.46) 

The first thing we notice is that the free system of 9-oscillators defined by the 
Hamiltonian 

M 

H = x  H ,  H, = i ( a t a i  + a , a t )  i = l , .  , ., M (2.5) 

breaks the symmetry u i l i i j  (this is expected), but aiso this symmetry is not transformed 
into a U,(M) symmetry (as one would hope). To see this we take for simplicity M =2.  
Then relations (2.4a) and (2.46) imply 

H; =f([h, +f] + [hi -;I) i = 1 , 2  (2.6a) 

hi=N,+i  (2.6b) 

H = H, + H 2 .  ( 2 . 6 ~ )  

/=I 

To make the algebra transparent we put 9 =e', and so 

sinh(y(h,+h,)/2) cosh(y(h,-h2)/2) 
2 sinh(y/2) 

H =  (2.7) 

The generators of the SU,(2), which can be constructed out of a , ,  a:, a>. a: are [ 101 

(2.8) 

[J,, J*I=*J* [ I+,  J-I = [2J31. (2.9) 

The quadratic Casimir of this algebra [ I O ]  (chosen to agree with the known Casimir 
for q = i )  is 

(2.10a) 

+ J+ = a:a, J - =  a 2 a ,  J3 f( h ,  - h,) 

and they satisfy the algebra 

C,  = J+J_  + [ J i  -;I2 - a 
(2.10b) 
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We observe that, when y = O  ( q  = l ) ,  
c -1 

2 - A H 2 -  1) (2.11) 

and so we have SU(2) symmetry (all generators commute with H ) .  But when y # O  
the Hamiltonian (2.7) depends explicitly on the generator I,. The representation space 
of SUJ2) constructed from two q-oscillators is [9, 10,191 

(2.12) 

j + m = n ,  j - m = n 2  n , ,  n,=O, 1 , 2 , . ,  . . (2.13) 

where n , ,  n2 are the eigenvalues of the number operators N,, N2. On this space the 
spectrum of the free Hamiltonian (2.7) with broken SU,(2) symmetry is as follows: 

Hlj, m ) =  &lj, m) (2.14a) 
: - n  1 ,- ",. ,... -:..L,. I . . l \ i .  I 1, ^^^L > & , L r r (  y ,  A,,, - 2 ,  b"J11 I " L  

(2.14b) 
sinh( y / 2 )  m = - j , .  . . , j .  = 

Now we pose the question of how it is possible to combine two oscillators in such a 
way that the resulting system exhibits SUJ2) symmetry (and in general M oscillators 
with SUJM) symmetry). From the expressions (2.10a), (2.10b) for the Casimir of 
SU,(2) we see that we have to find a combination of Hamiltonians, 

sinh yhi 
2 sinh(y/2) 

H j =  . i = 1 , 2  (2.15) 

such that the total Hamiltonian is a function only of h , +  h2. There is only one such 
linear combination of the two Hamiltonians (up to a permutation of 1 with 2) which 
gives the right limit when q + 1 ,  

H = H,qh2+H2q-hl (2.16a) 

sinh y ( h ,  + h,) 
2 sinh(y/2) 

H =  (2.166) 

For more than two oscillators, say M oscillators, one has to repeat the above construc- 

or 

and 

This 
SUO( 

s i n h y ( h , +  ...+ h M )  
2 sinh(y/2) 

H =  

h i = N ; + f  i = 1, . . . , M. 
lamiltonian is a U,(M) symmetry si :e it commi 
I )  in the q-bosonic oscillator realization [ 11,121 

.I IF,', ,..., *"I 

i =  1 , .  . . , M -  1 

r .+. ~ . . = u . u .  
'I 1 ,  

d .  I = h. I - h.  If, 

:S 

(2.17) 

(2.18) 

(2.19) 

ith all generators of 
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and the spectrum on the basis 

(2.21) 

n,, n 2 . .  . .=o, 1 , 2 , .  . . . 

is given by 

Hb,, . . ., nM)= E ,  ,..." Minlr.. ., n M )  (2.22a) 

sinh y(n, +.. . + n M  + M/2)  
2 sinh( y / 2 )  

En,...nM = (2.226) 

We observe that the above 9-oscillator system is interacting. For y # 0, we have 
repulsion of the levels. When y = ia, imaginary, some levels feel attraction and others 
repulsions. In particular when -T < (Y < n, the ground state energy decreases with the 
number of oscillators. 

It is possible to construct Hamiltonians with any product of q-symmetries. For 
example, if U , ,  U ,  are Hamiltonians with U,(M,), Uq(M2) symmetry then it is obvious 
that H = H , + H 2  has symmetry U,(M,)xU,(M,) and not U,(M,+M,). 

Finally, here are some remarks on the degeneracy of the U,(M) symmetric Hamil- 
tonians. For generic y (not y=Z?ri/rc) the degeneracy for every level is determined 
by a fixed value of n, +. . .+ nM, say n, and it is equal to d(n),  the number of partitions 
of n into positive integers. When y = 2 ~ i / r c  then the symmetry increases with the 
degeneracy d,(n) equal to the number of partitions of n into positive integers mod K.  

Another remark concerns the representation of SUJM) (see 2.200) and (2.20b)) 
in the case 9 = e2n"x. Using the expressions for the a,, a:s given by the matrices g, h 
(see 1.30)) we obtain explicit matrix realizations for this 'singular' case [29]. For 
example, for SU,(2) we have (1.27) 

(2.236) 

J ,  = f (  P O  1 - 1 O P ) .  ( 2 . 2 3 ~ )  

This representation is irreducible and we have 

J : = J : = O .  (224) 

3. Hopf algebra for the q-oscillator 

After exposing the general strategy for the construction of SU,( M)-invariant Hamil- 

q-oscillator) and discuss the origin of the 'co-multiplication type' of combination of 
the single-oscillator Hamiltonians. 

It has been noticed recently [15, 16, 181, that there is a q-bosonic realization of the 
orthosymplectic q-superalgebra osp4 (2.1) [30-321, with the a, a" operators playing 

!O!IiZ!IS, we wo.!d !ike to go b.ck !O the !WO q-nsci!!ator SYS!.E (or two-dimensicna! 
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the role of the odd elements and a 2 ,  a+2 the role of the even elements. A minimal 
subalgebra of the algebra osp (2.1) is formed by the elements a, a+, h = N + ' .  2 .  

sinh yh 
2sinh(y/2)' [ h ,  a ]  = -a [h ,  a'] = a + { a ,  a+} = (3.1) 

The superalgebra ospq (2.1) has a Hopf structure. The co-multiplication being 

A ( a )  = aOqh12+ qh '*Oa  (3 .2a)  

A(a') =a+@qh/2+q-h '2@a+ (3.26) 

A ( h )  = h O  I + IO  h ( 3 . 2 ~ )  

the antipode and the co-unit given by 

y ( a )  = -q-'12a y ( h ) = - h  (3.3a) r ( a + ) = - q  a 

& ( 1 ) = 1  E ( h ) =  & ( a ) =  &(a+)=O.  (3.3b) 

112 + 

The algebra (3.1) has A, as co-multiplication with a graded tensor product 

( a  0 b)(  c O  d )  = (-l)*"'*'''acO bd (3.4) 

8 ( a ) = 8 ( a t ) = 1  S (h )=O.  (3.5) 

with 

Even in the case q = 1 the graded tensor product structure is needed because of the 
anticommutators. In the tensor product space 

one may construct the states 

on which the operators A ( a ) ,  A (a+) ,  A ( h )  satisfy the q-oscillator algebra 

A ( a ) A ( a ' ) - q A ( a + ) A ( a )  = q-"'t''2. (3.8) 

Since (3.1) 'defines', the Hamiltonian, H 

H =;{a, a+}  (3.9) 

we see that the co-multiplication defines the correct 'tensoring' of the two-oscillator 
Hamiltonians: 

(3.10) 

In this framework there is still an SU,(2) symmetry ( a , ,  a ;  anticommute with a>,  a;),  

J+= a:a2 J-=-a:a,  J ,  = + ( h i  - h J  (3.11) 

A( H )  = i { A ( a ) ,  A( a')} = H ,  q h 2  + q-"? H , .  

which commutes with A ( H ) .  
One may, however, forget this superalgebra structure as is done in the q = 1 case 

when the two bosonic oscillator system is discussed. Since (3.10) gives the SU,(2)  
symmetric Hamiltonian, even when the a , ,  a: commute with the a 2 ,  a:, we may 
consider the Hopf algebraic structure only as a helpful device, although we think that 
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it would be interesting to examine systems of oscillators, which have anticommuting 
a,, a: operators. 

4. Conclusion 

We have defined many-body systems of q-oscillators with q-symmetries. Although 
these systems seem to be non-local, there are interesting physical systems with many- 
body non-local interactions. Such systems appear in 2 +  1 dimensions in condensed 
matter physics-the now famous anyons [33,34]. It is known that the anyon system 
exhibits exotic statistics with braid group permutation symmetry. Because of this and 
because the braid group plays a distinguished role in the representations of SU,(M) 
groups, which are the symmetries of the presented q-oscillator systems, we believe that 
the latter must possess, apart from their exact integrability, analogous physical proper- 
ties with the anyon systems. In some recent work [23] we found a relation of the one 
q-oscillator system and the angular motion of the two-anyon system. It could be the 
case that more degrees of freedom of the anyon systems can be implemented algebrai- 
cally using the many q-oscillator systems with SU,(M) symmetries. 
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